09498400 PINAL CREEK AT INSPIRATION DAM, NEAR GLOBE, AZ

LOCATION.—Lat 33° 34'23", long 110° 54'02", in NE_{1/4}NW_{1/4}SE_{1/4} sec. 26, T.3 N., R.14 E., Gila County, Hydrologic Unit 15060103, in Tonto National Forest, on right bank 7 ft upstream from Inspiration Dam, 3.8 mi upstream from mouth, and 14 mi northwest of Globe.

DRAINAGE AREA.-195 mi², of which about 33 mi² is partly or entirely noncontributing due to mining operations (1988).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1980 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,740 ft above sea level, from topographic map. Prior to Feb. 12, 1991, at datum 1.0 ft higher.

REMARKS.--No estimated daily discharge. Records fair. Since Nov. 20, 1999, base flows may be affected by discharges from a ground-water treatment plant, located about 5 mi uostream from the cace.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,700 ft³/s Jan. 11, 1993, gage height, 8.50 ft, on basis of slope-area measurement of peak flow; minimum daily, 0.64 ft³/s July 1, 1999.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 200 ft³/s and (or) maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 6	2125	849	3.38
Sept. 10	1500	*2,520	*5.12

Minimum daily discharge, 1.4 ft³/s Aug. 15, Sept. 2.

			DISCHARGE	CUBIC	FEET PER		WATER Y Y MEAN V	EAR OCTOBER ALUES	2001 TO) SEPTEMBER	2002	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.0	7.4	6.9	6.7	6.2	5.5	4.9	4.0	2.8	1.7	1.7	1.5
2	5.1	7.1	6.7	6.7	6.1	5.5	4.9	4.1	2.7	1.7	1.7	1.4
3	5.0	7.3	6.7	6.6	6.2	5.6	4.8	4.1	2.7	1.7	2.1	1.5
4	4.9	7.4	7.2	6.6	6.1	5.6	4.9	4.0	2.5	1.9	2.2	1.7
5	4.9	7.5	6.6	6.5	6.0	5.6	4.9	4.0	2.3	1.6	2.0	1.8
6	66	7.5	6.6	6.5	E 0	E 6	4.0	2.0	2.2	1.8	2.0	1.8
7	16			6.5	5.9	5.0	4.9	3.9 3.9 3.5 4.0 3.7	2.3	1.8		
		7.7	6.8	6.3	6.0	5.6	5.0	3.9	2.5	1.9	2.0	2.0
8	6.8	7.6	6.9	6.0	6.5	5.8	4.9	3.5	2.5	1.8	1.9	2.3
9	6.6	7.2	6.8	6.4	6.0	5.5	5.0	4.0	2.4	1.9	1.8	2.3
10	6.7	6.5	6.7		5.6	5.4	4.8	3.7	2.3	2.1	1.7	202
11	6.2	6.3 6.7 6.6 6.4	6.8 6.7 6.9 6.9 7.2	6.9	5.6	5.4	4.7		2.3	2.3	1.6	7.8
12	6.3	6.3	6.7	6.8	5.6 5.3 5.7	5.6	4.5	3.8	2.3	1.8	1.7	4.6
13	6.3	6.7	6.9	6.8	5.3	5.2	4.5	4.0	2.5	1.7	1.9	4.3
14	6.5	6.6	6.9	6.7	5.7	5.4	4.6	4.0	2.3	1.7 1.6 1.9	1.7	3.9
15	6.4	6.4	7.2	6.7	6.0	5.4	4.7	3.8 4.0 4.0 4.0	2.3	1.9	1.4	3.6
16	6.3	6.2	7.2	6.8	6.0	5.4	4.9	3.7	2.0	1.9	1.8	3.5
17	6.9	6.3	7.0	6.9	5.6	5.4	4.5	3.7	1.8	2.0	1.9	4.0
18	6.9	6.4	7.1	7.1	5.6	5.4	4.6		1.9	1.9	1.8	3.8
19	6.9	6.6	6.8	6.8	5.5	5.3	4.3		2.1	1.7	1.7	3.8
20	6.8	6.9	6.8	6.5	5.5	5.3	4.6		2.2	1.8	1.7	3.5
21	6.9	6.8	6.7	6.5	5.5	5.3	4.8	2 5	1.9	1.7	1.8	3.0
	7.0	6.5		6.5	5.5	5.3	4.6		2.8	1.7	1.7	3.1
22 23	7.0	6.4	6.8	6.4	5.7	5.3		3.5	2.8	1.7	1.7	3.1
		6.2	6.5	5.9			4.9 4.5	3.0				
24	7.1		7.1		5.8	5.4		3.3	1.8		1.7	3.2
25	7.0	6.6	7.2	6.3	5.5	5.2	4.4	3.2	1.8		1.7	3.1
26	7.3	6.5 6.5 6.6 6.7	7.1	6.5	5.3	5.3	4.2	3.7 3.8 3.0 3.2 3.0	1.8	1.9	2.4	2.7
27	7.2	6.5	6.9	6.5	5.2	5.0	4.2	3.8	1.7	1.8	1.5	3.1
28	6.6	6.5	7.1	6.5	5.5	4.9	4.3	3.0	1.6	1.8	1.8	3.1
29	7.1	6.6	7.3	6.4		5.0	4.2	3.2	1.8	1.7	2.2	3.0
30	6.4	6.7	7.3	6.6		5.0	4.1	3.0	1.8	1.8	1.7	3.2
31	6.3		7.3	6.4		5.0		3.1		1.7	1.6	
TOTAL	268 5	203 2	214 6 2	03 4	161 0	166 2	139 1	114.6	65.7	56.0	56.1	291.6
MEAN	8 661	6 773	6 923 6	561	5 750	5 361	4 637	3 697			1.810	9.720
MAX	66	7 7	7 3	7 1	6.5	5.8	5.0	4 1			2.4	202
MIN	1 0	6.2	6.5	5 0	5.2	1 0	1 1	3.0	1.6		1.4	1.4
AC-FT	522	403	426	403	210	330	276	227	130		111	578
CFSM	0.04	403	0.04	U U3	0 03	0 03	0 02	0.02	0 01	0.01	0.01	0.05
IN.	0.04	0.03	0.04	0.03	0.03	0.03	0.02	4.1 3.0 227 0.02 0.02	0.01	0.01	0.01	0.05
STATIST								ER YEAR (WY)				
MEAN	9.636	7.807		0.44	28.58	15.68	9.787	8.036	6.306	7.769	8.546	7.484
MAX	38.8	13.0		440		67.3	30.1		16.2		28.4	16.4
(WY)	1984			1993	1993	1993	1993	1993	1993	1981	1990	1983
MIN	2.56	3.72	3.37	3.20	3.44	3.55	3.46	2.38	1.07	1.81	1.81	2.81
(WY)	2000	1999	1985 3.37 1999	1999	1999	1999	1999	1999	1999	2002	2002	1989
SUMMARY	Y STATIST	ICS	FOR 200	1 CALEN	DAR YEAR	F	OR 2002	WATER YEAR		WATER YEAR	S 1980 -	2002
ANNUAL	TOTAL			2188.7			1940.					
ANNUAL	MEAN			5.99	6		5.	.315		12.47		
HIGHEST	r annual	MEAN								84.2		1993
LOWEST	ANNUAL M	EAN			0-4		000	Sep 10 .4 Aug 15 .6 Aug 30		3.76	T 11	1999
HIGHEST	DATLY M	LAN		2 (UCT 6		202	sep 10		3300	Jan Il	1993
TOMEDI.	DWITT ME	A WLMLMina Tana		2.0	Jul 3		1.	. T MUG 15		0.64 0.72	Jun 25	1990
ANNITAT.	RINOFF (AC-FT)		4340	0 un 23		3850			9030	0 am 23	1000
ANNUAL	RUNOFF (CFSM)		0.03	1		0.	.027		0.06	4	
ANNUAL	RUNOFF (INCHES)		0.42			0.	.37		0.87		
10 PERG	CENT EXCE	EDS		7.7			6.	. 9		12		
50 PERG	CENT EXCE	EDS		6.3			5.			7.2		
90 PERG	JENT EXCE	EDS		3.9			1.	. 8		3.9		

09498400 PINAL CREEK AT INSPIRATION DAM, NEAR GLOBE, AZ—CONTINUED WATER-QUALITY RECORDS

PERIOD OF RECORD.--Nov. 1979 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date DEC 20	Time 1035	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
MAR 29	1130	4.9	.51	686	8.5	100	7.6	2140	19.5	17.7	1100	1200	371
JUN 11	1250	2.4	. 57	686	7.1	97	7.6	2190	33.0	25.4	1200	1200	377
SEP													
06	1210	2.0	.97	687	7.3	101	7.0	2250	30.5	25.8	1200	1200	389
Date	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
DEC 20	368	64.0	64.0	4.50	.7	56.0	48	58	<1	56.0	1.1	1210	<1c1
MAR 29	370	60.0	59.0	4.40	.8	61.0	46	56	<1	54.0	1.0	1200	3
JUN 11	401	63.0		4.20	.9	69.0	45	55	<1				<1
SEP			66.0							55.0	1.0	1250	
06	387	63.0	64.0	5.30	. 8	65.0	45	55	<1	59.0	1.0	1250	<1
Date	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4) (71845)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)
Date DEC 20	DIS- SOLVED (TONS PER AC-FT)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	MTEC MF WATER (COL/ 100 ML)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	MONY, DIS- SOLVED (UG/L AS SB)
DEC 20 MAR	DIS- SOLVED (TONS PER AC-FT) (70303)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AMMONIA TOTAL (MG/L AS N) (00610)	GEN, AMMONIA TOTAL (MG/L AS NH4) (71845)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	PHORUS TOTAL (MG/L AS P) (00665)	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	MTEC MF WATER (COL/ 100 ML) (31633)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
DEC 20 MAR 29 JUN	DIS- SOLVED (TONS PER AC-FT) (70303) 2.43	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) E1960cl	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1780	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02	GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .03	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	PHORUS TOTAL (MG/L AS P) (00665)	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	MTEC MF WATER (COL/ 100 ML) (31633) E7k E4k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E2k E6k	MONY, DIS- SOLVED (UG/L AS SB) (01095)
DEC 20 MAR 29 JUN 11 SEP	DIS- SOLVED (TONS PER AC-FT) (70303) 2.43 2.65	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) E1960c1 1950	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1780 1780	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 1.1 <.20 <.20	GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 .01	GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .03 .01	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	PHORUS TOTAL (MG/L AS P) (00665) <.02 <.02	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 8 <5	MTEC MF WATER (COL/ 100 ML) (31633) E7k E4k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E2k E6k	MONY, DIS- SOLVED (UG/L AS SB) (01095)
DEC 20 MAR 29 JUN 11	DIS- SOLVED (TONS PER AC-FT) (70303) 2.43	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) E1960cl	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1780	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02	GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .03	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	PHORUS TOTAL (MG/L AS P) (00665)	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	MTEC MF WATER (COL/ 100 ML) (31633) E7k E4k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E2k E6k	MONY, DIS- SOLVED (UG/L AS SB) (01095)
DEC 20 MAR 29 JUN 11 SEP 06	DIS- SOLVED (TONS PER AC-FT) (70303) 2.43 2.65 2.38 2.82	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) E1960c1 1950	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1780 1780 1850 1860	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 1.1 <.20 <.20	GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 .01	GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .03 .01	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	PHORUS TOTAL (MG/L AS P) (00665) <.02 <.02	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 8 <5	MTEC MF WATER (COL/ 100 ML) (31633) E7k E4k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E2k E6k	MONY, DIS- SOLVED (UG/L AS SB) (01095)
DEC 20 MAR 29 JUN 11 SEP 06 Date	DIS- SOLVED (TONS PER AC-FT) (70303) 2.43 2.65 2.38 2.82 ANTI- MONY, TOTAL (UG/L AS SB)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) E1960c1 1950 2070 ARSENIC DIS- SOLVED (US- SOLVED (UG/L AS AS)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1780 1780 1850 1860	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 1.1 <.20 <.20 <.20 SOLVED (UG/L AS BA)	GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 .01 .02 .01 .02 .01 EBARIUM, TOTAL RECOV-ERABLE (UG/L AS BA)	GEN, AMMONIA (MG/L AS NH4) (71845) .03 .01 .03 .01 .03 .01 .01 BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 <.020 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	GEN, ORGANIC TOTAL (MG/L AS N) (00605) 1.1 BORON, DIS- SOLVED (UG/L AS B)	PHORUS TOTAL (MG/L AS P) (00665) <.02 <.02 <.02 <.02 <.02 C.02 C.02 C.02 C.02 C.02 C.02 C.02 C.02 C.02 C.03 C.04 C.05 C.05 C.06 C.07 C.07 C.08 C.08 C.08 C.09	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 8 <5 <5 <5 CADMIUM DIS- SOLVED (UG/L AS CD)	MTEC MF WATER (COL/ 100 ML) (31633) E7k E4k E8k 100 CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD)	FORM, FECAL, 0.7 0.7 UM-MF (COLS./ 100 ML) (31625) E2k E6k 35 CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1 <1 <1 <1 CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)
DEC 20 MAR 29 JUN 11 SEP 06	DIS- SOLVED (TONS PER AC-FT) (70303) 2.43 2.65 2.38 2.82 ANTI- MONY, TOTAL (UG/L AS SB) (01097)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) E1960c1 1950 2070 ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1780 1850 1860 ARSENIC TOTAL (UG/L AS AS) (01002)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 1.1 <.20 <.20 <.20 <.20 BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 .01 .02 .01 .02 .01 EBARIUM, TOTAL RECOV-ERABLE (UG/L AS BA) (01007)	GEN, AMMONIA (MG/L AS NH4) (71845) .03 .01 .03 .01 .01 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 <.020 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012)	GEN, ORGANIC TOTAL (MG/L AS N) (00605) 1.1 BORON, DIS- SOLVED (UG/L AS B) (01020)	PHORUS TOTAL (MG/L AS P) (00665) <.02 <.02 <.02 <.02 <.02 IBORON, TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 8 <5 <5 <5 CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	MTEC MF WATER (COL/ 100 ML) (31633) E7k E4k E8k 100 CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E2k E6k 35 CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030)	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1 <1 <1 <1 CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034)
DEC 20 MAR 29 JUN 11 SEP 06 Date Dec 20 MAR 29 JUN	DIS- SOLVED (TONS PER AC-FT) (70303) 2.43 2.65 2.38 2.82 ANTI-MONY, TOTAL (UG/L AS SB) (01097) <1	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) E1960c1 1950 2070 ARSENIC DIS- SOLVED (UG/L AS AS) (01000) <2 <1	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1780 1780 1850 1860 ARSENIC TOTAL (UG/L AS AS) (01002) <2 <1	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 1.1 <.20 <.20 <.20 SALUED (UG/L AS BA) (01005) 9.4 8.7	GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 .01 .02 .01 BARIUM, TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 9.7 9.0	GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .03 .01 .03 .01 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 <.020 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) <1	GEN, ORGANIC TOTAL (MG/L AS N) (00605) 1.1 BORON, DIS- SOLVED (UG/L AS B) (01020) 53 48	PHORUS TOTAL (MG/L AS P) (00665) <.02 <.02 <.02 <.02 <.02 d.02 4.02 BORON, TOTAL RECOV-ERABLE (UG/L AS B) (01022) 49 50	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 8 <5 <5 <5 CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.5 <.5	MTEC MF WATER (COL/ 100 ML) (31633) E7k E4k E8k 100 CADMIUM WATER UNFLIRD TOTAL (UG/L AS (OJ027) <.5 <.5	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E2k E6k 35 CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030)	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1 <1 <1 <1 <1 CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1
DEC 20 MAR 29 JUN 11 SEP 06 Date Dec 20 MAR 29	DIS- SOLVED (TONS PER AC-FT) (70303) 2.43 2.65 2.38 2.82 ANTI-MONY, TOTAL (UG/L AS SB) (01097)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) E1960c1 1950 2070 ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	SUM OF CONSTI TUENTS, DIS- SOLVED (MG/L) (70301) 1780 1850 1860 ARSENIC TOTAL (UG/L AS AS) (01002)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 1.1 <.20 <.20 <.20 <.20 C.20 GRAIUM, DIS- SOLVED (UG/L AS BA) (01005)	GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 .01 .02 .01 BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .03 .01 .03 .01 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 <.020 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012)	GEN, ORGANIC TOTAL (MG/L AS N) (00605) 1.1 BORON, DIS- SOLVED (UG/L AS B) (01020)	PHORUS TOTAL (MG/L AS P) (00665) <.02 <.02 <.02 <.02 <.02 description of the control of th	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 8 <5 <5 CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.5	MTEC MF WATER (COL/ 100 ML) (31633) E7k E4k E8k 100 CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	FORM, FECAL, 0.7 .7 .0.7 .0.7 .0.8 .0.8 .0.9 .0.8 .0.9	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1 <1 <1 <1 <1 CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034)

09498400 PINAL CREEK AT INSPIRATION DAM, NEAR GLOBE, AZ—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)
DEC													
20 MAR	<2	<2	<2	100	<2	<2	240	314	<.10	<.1	5	4	<2
29 JUN	<2	2	2	48	<2	<2	196	243	<.10	<.1	3	4	<1
11 SEP	<2	2	<2	25	<2	<2	225	236	<.10	<.1	4	4	<1
06	2	<2	2	15	<2	<2	175	186	<.10	<.1	3	4	<1
Date	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	THAL- LIUM, TOTAL (UG/L AS TL) (01059)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)			
DEC 20	<4	<1	<1	1180	<2	<2	23	10	1.0	.02			
MAR	· -	-	· -		_								
29 JUN	<1	<1	<1	1130	<2	<2	7	4	1.0	.01			
11 SEP	<1	<1	<1	1170	<2	<2	7	5	4.0	.03			
06	1	<1	<1	1200	<2	<2	17	2	2.0	.01			
Value qualif c See k Coun	than mated valu	used in t r comment r acceptab	his repor	t:									

09498400 PINAL CREEK AT INSPIRATION DAM, NEAR GLOBE, AZ—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Water-quality measurements in the following table were made as part of the ADEQ Fixed-Station Network Program. The following analyses are quality-assurance samples processed during the 2002 sampling period and are defined in the introductory text section titled "Water-Quality Control Data".

Date	Time	Sample type	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)
JUN 11	1255	2	5.8	1	30.0	.04	<.03	<.1	.20	.02	<.020	<.02	<3
	BARIUM,	BERYL- LIUM,	CADMIUM	CHRO- MIUM,	COPPER,	IRON,	LEAD,	MANGA- NESE,	NIČKEL,	ZINC,			
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-			
Date	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L	SOLVED (UG/L			
Date	AS BA)	AS BE)	AS CD)	AS CR)	AS CU)	AS FE)	AS PB)	AS MN)	AS NI)	AS ZN)			
	(01005)	(01010)	(01025)	(01030)	(01040)	(01046)	(01049)	(01056)	(01065)	(01090)			
JUN													
11	<.5	<1	<.5	<1	<2	<2	<2	<1	<1	<2			
Remark codes	used in t	his repor	t:										

< -- Less than